Rules for Modeling Signaltransduction Systems

William S. Hlavacek

Signal Transduction, Oct. 11th, 14:00-16:30

Systems Biology of Basic Biological Systems

ICSB 2006

How do we predict the behavior of a system from knowledge of its parts and interactions?

- Combinatorial complexity
- Drawbacks of conventional modeling approaches
- Rule-based modeling methods
 - Visual and computable representation of protein interactions with site-specific details
- An example of a rule-based model
- Future directions

Signaling proteins typically contain multiple phosphorylation sites

Oligomerization alone can generate many complexes

Complexes potentially involved in Toll-like receptor signaling

6 homodimers, 6 heterodimers, 20 homotrimers, 66 heterotrimers

A hexamer of death domains Weber and Vincenz (2001) *FEBS Lett*.

A trimer of TIR domains C.-T. Tung (Los Alamos)

Outline

- Combinatorial complexity
- Drawbacks of conventional modeling approaches
- Rule-based modeling methods
- An example of a rule-based model
- Future directions

Draw a reaction scheme diagram and translate the diagram into equations

 $d[RP1]/dt = 2k_p[R_2] - k_d[RP1] - k_p[RP1] + 2k_d[RP2]$ $-k_{on}[Grb2][RP1] + k_{off}[RP1-Grb2] ...$

We need an equation for each chemical species and a term for each reaction...

- Sometimes it's easy to write the equations
 - 7 equations with 12 terms on the right-hand side for the scheme shown in the previous slide
- And sometimes it's difficult to write the equations
 - 356 equations with 3749 terms on the right-hand side for a model of signaling by the epidermal growth factor receptor [Blinov et al. (2006) *BioSystems*]

Assumptions are made to limit combinatorial complexity

Outline

- Combinatorial complexity
- Drawbacks of conventional modeling approaches
- Rule-based modeling methods
- An example of a rule-based model
- Future directions

Rule-based modeling in a nutshell

- Use graphs to represent molecules
 - Vertices correspond to molecular parts
 - Vertices of the same "color" comprise a molecule
 - Vertices are labeled labels can be introduced for states (open, closed, phosphorylated, or not phosphorylated)
 - Edges represent bonds between molecular parts
- Use graph-rewriting rules to define interactions and their consequences
 - Involves pattern (subgraph) matching
 - Simple operations, adding or removing an edge or relabeling a vertex

Faeder et al. (2005) *Proc. ACM Symp. Appl. Computing* Blinov et al. (2005) *Proc. BioCONCUR*

BioNetGen2: Software for graphical rule-based modeling

Other software for rule-based modeling

- StochSim
- Moleculizer
- Simmune

Five proteins involved in EGFR signaling represented as graphs

Molecule templates

Vertices correspond to components of proteins

Components may have attributes: O or P

Complexes are represented as connected instances of molecule graphs

An EGFR dimer

Edges represent bonds between components

Bonds may be intra- or intermolecular

Sets of chemical species with common features are represented by patterns (subgraphs)

A pattern that selects EGFR phosphorylated at Y1092.

Interactions are represented as graph-rewriting rules, which are comprised of patterns

Patterns select reactants and specify graph transformation

- Addition of bond between EGF and EGFR

Rule-based version of the Kholodenko model

- 5 molecule types
- 23 reaction rules
- No new rate parameters (!)

356 species3749 reactions

Dimerization rule eliminates previous assumption restricting breakup of receptors

EGFR dimerizes (600 reactions)

Dimers form and break up independent of phosphorylation of cytoplasmic domains

Outline

- Combinatorial complexity
- Drawbacks of conventional modeling approaches
- Rule-based modeling methods
- An example of a rule-based model
- Future directions

Creating a model

- Define graphs (molecules)
- Define graph-rewriting rules (interactions)
- The rest is automatic we'll look at how that works

The system: interaction of a trivalent ligand with a bivalent cell-surface receptor

A model specification

Rule processing

- Define seed species
- Determine if a pattern in a rule matches any species
- If so, apply the transformation defined in the rule
- Iteratively apply rules to new product species

Seed species

After first round of rule application

After the second round of rule application

Two rules generate a vast number of chemical species and reactions

Diverse ligand-receptor complexes are possible

The network is large even when we consider only the populated portion

Rule-based Gillespie

- Set t=0, determine cumulative rate for each reaction type, set stop criteria
- Select next reaction time and reaction type (rather than an individual reaction) using direct method
- Select reactants using one or two additional random numbers and fire reaction
- Update reaction type rates
- Iterate

Kinetics of sol-gel phase transition

Four reaction types vs. many more reactions

Other applications of rule-based modeling

A simple metabolic network of 23 reactions involving 21 metabolites can involve up to 622 isotopomer fractions

EST 1943

Recently, we encoded reactions with carbon-fate maps in the form of BioNetGen rules for 5,153 metabolic reactions catalogued in the KEGG database

Outline

- Combinatorial complexity
- Drawbacks of conventional modeling approaches
- Rule-based modeling methods
- An example of a rule-based model
- Future directions

We can use rules to visualize site-specific details of protein interactions

EGFG(ECD!1,aa1092~Y).EGFR(ECD!1) -> EGFR(ECD!1,aa1092~pY).EGFR(ECD!1) k1

EGFR(aa1092~pY) -> EGFR(aa1092~Y) k2

Other visualization styles are possible and may be useful as well

EGFR(aa1092~pY) + Grb2(SH2) <-> EGFR(aa1092~pY!1).Grb2(SH2!1) k3,k4

At the same time, we can compute with rules

Is it time for high-throughput, extensible, community-driven modeling?

- Can we translate available information about proteins and protein interactions into model elements?
- Can we build models incrementally?
- How to establish conventions for annotating rule-based models?
- How best to collaborate on development of large-scale models?

cellsignaling.lanl.gov

Jin Yang (postdoc) Fangping Mu (postdoc)

Michael L. Blinov (UConn) James R. Faeder (Los Alamos) Richard G. Posner (TGen) Chang-Shung Tung (Los Alamos)

Funding NIH DOE

