Languages & Grammars for Programming DNA

Drew Endy MIT Biological Engineering

http://mit.edu/endy

ICSB 10 October 2006

	8 (8 0						
Time : 0.0 Ribosomes coli Pol coli Pol-P coli Pol-2.0	10000 700 0 0	10^0 	10^1 	10^2 J	10^3 	10^4	10^5 1
gp1-3.5							
90.3 90.4 90.5 90.6 90.7 90.6 90.7 90.7 90.7 90.7 90.7 90.7 90.6 90.7 90.7 90.1.2 90.6 90.7 90.1.2 90.6 90.7 90.1.2 90.6 90.7 90.1.2 90.6 90.7 90.1.2 90.6 90.7 90.1.2 90.6 90.7 90.1.2 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.6 90.7 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.7 90.0 90.0	000000000000000000000000000000000000000						
ğp19 ap19 5							

		Amino *		79 J. A
	Gene *	acids	Mr ^c	Function °
Class I	0-3	116	13.678	Inactivates host restriction
Contract a	0.4	50	5621	
	0-5	47	4744	
	0.6A	53	6201	
	0-6B	111	(13, 250)	
	0-7	359	41,124	Protein kinase
	1	883	98,092	T7 RNA polymerase
	1.1	42	5180	
	$I \cdot 2$	84	10,059	Replication
	$I \cdot 3$	359	41,133	DNA ligase
Class II	1.4	51	5446	
	1.5	29	3174	
	1.6	86	9946	
	1.7	195	22,053	
	1.8	48	5781	
	2	63	7043	Inactivates host RNA polymerase
	2-5	231	25,562	Single-stranded DNA-binding protein
	2-8	139	15,617	
	3	148	17,040	Endonuclease
	3.5	150	16,806	Amidase (lysozyme)
	3.8	121	14,329	
	4A	566	62,656	Primase
	4B	503	55,743	Primase
	$(4 \cdot I)$	39	4265	
	(4.2)	112	12,653	
	4.3	70	7927	
	4.5	88	9960	
	4-7	135	15,208	
	5	704	79,692	DNA polymerase
	5-3	118	13,067	
	5-5	98	11,075	and the set of the
	3-7	68	7280	Permits growth on A lysogens
	6	347	39,995	Exonuclease
	00		1000	
Class III	6.5	84	9474	
	67	87	9207	Most same
	7	132	10,303	Host range
	7.7	130	14 737	riost range
	8	535	58,989	Head-tail protein
	9	306	33,766	Head assembly protein
	10 A	344	36,414	Major head protein
	10B	397	(41, 800)	Minor head protein
	11	196	22,289	Tail protein
	12	793	89,265	Tail protein
	13	138	15,852	Internal virion protein
	14	195	20,836	Internal virion protein
	15	746	84,210	Internal virion protein
	16	1318	143,840	Internal virion protein
	17	552	61,441	Tail fiber protein
	17.5	67	7391	7587 6
	18	89	10,145	DNA maturation
	(18.7)	82	9195	5354 ······
	19	585	66,130	DNA maturation
	(19.2)	84	9:264	
	(19.3)	56	6429	
	19.5	49	5434	

Dunn & Studier (1983) Journal of Molecular Biology v166 p477

Wild-type T7 genes 2.8-3

-----2.8----->

...acgcaaaaggaggcgacatggcaggttacggcgctaaaggaatccgaaa...

J.R. Koza et al.

Automated Synthesis of Computational Circuits using GeneticProgramming, 1997 IEEE International Conference on Evolutionary Computation ----->

acgcaaagggaggcgacatggcaggttacggcgctaaaggaatccgaaa

acgcaa**GgggagA**cgac**aCg**gcaggttacggcgc**taaggatccggccg**caa<u>agggagg</u>cgac**atg**gcaggttacggcgctaaa

Section alpha $(1 \rightarrow 8,311 \text{ bp})$

Section *beta* (8,311 → 12,179 bp)

Wild-Type T7 (T7⁺)

T7.1_[1-12,179]:**T7**⁺_[11,516-39,937]

the engineering of biology

BRIEF COMMUNICATIONS

Engineering Escherichia coli to see light

These smart bacteria 'photograph' a light pattern as a high-definition chemical image.

Anselm Levskaya*, Aaron A. Chevalier‡, Jeffrey J. Tabor‡, Zachary Booth Simpson‡, Laura A. Lavery‡, Matthew Levy‡, Eric A. Davidson‡, Alexander Scouras†, Andrew D. Ellington†‡, Edward M. Marcotte†‡, Christopher A. Voigt*§]]

Available online at www.sciencedirect.com

Environmentally Controlled Invasion of Cancer Cells by Engineered Bacteria

J. Christopher Anderson^{1,3}, Elizabeth J. Clarke³, Adam P. Arkin^{1,2*} and Christopher A. Voigt^{2,3}

A synthetic multicellular system for programmed pattern formation

Subhayu Basu¹, Yoram Gerchman¹, Cynthia H. Collins³, Frances H. Arnold³ & Ron Weiss^{1,2}

¹Department of Electrical Engineering and ²Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA ³Division of Chemistry and Chemical Engineering, California Institute of Technology 210-41, Pasadena, California 91125, USA

A synthetic oscillatory network of transcriptional regulators

Michael B. Elowitz & Stanislas Leibler

Stor all

I. Recombinant DNA 2. PCR3. Automated sequencing 4. DNA synthesis 5. Standardization 6. Abstraction

DNA Synthesis

To build section alpha, we first cloned parts 5, 6, 7, 8, 12, 13, 14, 15, 16, 18, 20, 22, and 24 into pSB104. We cloned part 11 into pSB2K3. We cloned each part with its part-specific bracketing restriction sites surrounded by additional BioBrick restriction sites. We used site-directed mutagenesis on parts 6, 7, 14, and 20 to introduce the sites UI, U2, U3, and U4, respectively. Our site-directed mutagenesis of part 20 failed. We used site-directed mutagenesis to remove a single Eco01091 restriction site from the vector pUBI 19BHB carrying the scaffold Fragment 4. We cloned part 15 into this modified vector. We then cloned scaffold Fragment 4 into pREB and used serial cloning to add the following parts: 7, 8, 12, 13, 14, 16, 18, 20, 22, and 23. We digested the now-populated scaffold Fragment 4 with Nhel and Bcll and purified the resulting DNA.Next, we cloned parts 5 and 6 into pUB119BHB carrying scaffold Fragment 3.We used the resulting DNA for in vitro assembly of a construct spanning from the left end of T7 to part 7. To do this, we cut wild-type T7 genomic DNA with Asel, isolated the 388 bp left-end fragment, and ligated this DNA to scaffold Fragment 2. We selected the correct ligation product by PCR. We fixed the mutation in part 3 (AI) via a two-step process. First, PCR primers with the corrected sequence for part 3 were used to amplify the two halves of the construct to the left and right ends of part 3. Second, a PCR ligation joined the two constructs. We added scaffold Fragment 3 to the above left-end construct once again by PCR ligation as described above. We repaired the mutation in part 4 (A2, A3, and R0.3) following the same procedure as with part 3. We used a right-end primer containing an Mlul site to amplify the entire construct, and used the Mlul site to add part 7. We used PCR to select the ligation product, digested the product with Nhel, and purified the resulting DNA.We isolated the right arm of a Bcll digestion of wildtype T7 genomic DNA and used ligation to add the populated left-end construct and the populated Scaffold Fragment 4. We transfected the three-way ligation product into IJ1127. We purified DNA from liquid culture lysates inoculated from single plaques. We used restriction enzymes to digest the DNA and isolate the correct clones.Next, we added part 11 via three-way ligation and transfection. Because the restriction sites that bracket part 9 (RsrII) also cut wild-type T7 DNA, we needed to use in vitro assembly to add this part to a subsection of section alpha. To do this, we used PCR to amplify the region spanning parts 5–12 from the refactored genome. We cut the PCR product with RsrII and ligated part 9. We used PCR to select the correct ligation product; this PCR reaction also added a SacII site to the fragment. We digested the PCR product with Sacl and Sacll and cloned onto the otherwise wild-type phage. Lastly, we used the SacII site to clone part 10 onto the phage.

Get me this DNA!

Abstraction

<u>DNA</u> is genetic material.

TAATACGACTCACTATAGGGAGA

Parts are basic biological f(x)'s encoded via genetic material.

R0083

Type:PromoterFamily:Protein:DNAActivity:2 PoPS (max.)Cell Type:AnyRequires:C0083Temp:< Tm</td>Issues:NoneLicense:Public

Devices provide human-defined f(x)'s using one or more parts.

Q005 I (INVERTER)

Systems provide human-defined f(x)'s using one or more devices.

Devices

Parts

Standards

ON A SYSTEM OF SCREW THREADS AND NUTS.

BY WILLIAM SELLERS.

[Read before the FRANKLIN INSTITUTE, April 21, 1864.]

The importance of a uniform system of screw threads and nuts is so generally acknowledged by the engineering profession, that it needs no argument to set forth its advantages; and in offering any plan for their acceptance, it remains only to demonstrate its practicability and its superiority over any of the numerous special proportions now used by the different manufacturers. In this country no organized attempt has as yet been made to establish any system, each manufacturer having adopted whatever his judgment may have dictated as the best,

Authors: Barry Canton [bcanton@mit.edu] Anna Labno [labnoa@mit.edu]

http://parts.mit.edu/registry/index.php/Part:BBa_F2620

Last Update: 5 October 2006

Description

A transcription factor (LuxR, BBa C0062) that is active in the presence of cell-cell signaling molecule 3OC_eHSL is controlled by a tetR regulatable operator (BBa_R0040). Device input is 3OC_eHSL. Device output is PoPS from a LuxR-regulated operator. If used in a cell containing TetR then a second input signal such as aTc can be used to produce a logical AND function.

Characteristics

Input Swing: 0.1 to 1000 nM 3OC₆HSL, exogenous Output Swing: 21±3 to 590±9 GFP molecules cfu⁻¹ s⁻¹ Switch Point. 10 nM 3OC₆HSL, exogenous *LH Response*: **9.7 min** $(t_{50\%})$, **17 min** $(t_{90\%})$

TetR-regulated operator LuxR-regulated operator

40

Time (min)

Response Time*

-100

Stability**

Devices Signaling

^{1E1} 1E2 1E3 1E4 GFp (arbitrary units)

Low Input

20

Demand

5040/141600 charged tRNA cfu⁻¹ s⁻¹ Translation Demand: (low/high input) 336/9449 ribosomes sequestered cfu-1

Compatibility

Chassis: Compatible with MC4100, MG1655, and DH5 α Plasmids: Compatible with pSB3K3 and pSB1A2 Devices: Compatible with E0240, E0430 and E0434 Crosstalk with systems containing TetR (C0040)

Signaling: Crosstalk with input molecules similar to 30C HSL

Genetic:	>92/74 replication events		
Performance:	>92/74 replication events		
Conditions (al	bridged)		
Output:	Indirect via BBa_E0240		
Vector:	pSB3K3		
Chassis:	MG1655		
Culture:	Supplemented M9, 37°C		
*Equipment:	PE Victor3 plate reader		
**Equipment:	BD FACScan cytometer		

GFP (arbitrary units)

38

d

20

High Input

Registry of Standard Biological Parts making life better, one part at a time

Designs on life

Earlier this month, students from around the world locked horns in competition. Their challenge was to build functioning devices out of biological parts. Erika Check finds out how they got on.

ven if you're thinking big, you usually have to start small. Especially, as a group of Swiss students found, when big means counting to infinity. The team was drawing up a blueprint for the world's first counting machine made entirely of biological parts. Although they had their sights on loftier numbers, they opted to go no higher than two. If the plan worked, it would be a proof-of-principle for a much larger tallying device.

The group, from the Federal Institute of Technology (ETH) in Zurich, was one of 17 teams unveiling their projects at the first international Intercollegiate Genetically Engineered Machine (iGEM) competition, held at the Massachusetts Institute of Technology (MIT) in Cambridge on 5 and 6 November. The event

attracted students from all over the world to design and build machines made entirely from biological components such as genes and proteins. They drew up grand designs for bacterial Etch-a-Sketches, photosensitive t-shirts, thermometers and sensors. And if none of the designs succeeded completely, that was more because of the limitations of the nascent science of synthetic biology than any lack of enthusiasm, creativity or hard work.

Synthetic biology aims to merge engineering approaches with biology. Researchers working at the most basic level are copying simple biological processes, such as the production of a protein from a gene. They break the process down into its component elements, such as a gene and the pieces of DNA

Bidding for glory: teams from the ETH in Zurich (top), Cambridge, UK, (bottom right) and Massachusetts at the first international Intercollegiate Genetically Engineered Machine competition.

Done

2006 iGEM Jamboree 4-5 November MIT Building 32

We can make it much easier to engineer biology

We have a responsibility to help lead the overwhelmingly constructive development and application of future biological technologies.

Thank you!